Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 2): 328-335, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300132

RESUMO

The structural and chemical evolution of battery electrodes at the nanoscale plays an important role in affecting the cell performance. Nano-resolution X-ray microscopy has been demonstrated as a powerful technique for characterizing the evolution of battery electrodes under operating conditions with sensitivity to their morphology, compositional distribution and redox heterogeneity. In real-world batteries, the electrode could deform upon battery operation, causing challenges for the image registration which is necessary for several experimental modalities, e.g. XANES imaging. To address this challenge, this work develops a deep-learning-based method for automatic particle identification and tracking. This approach was not only able to facilitate image registration with good robustness but also allowed quantification of the degree of sample deformation. The effectiveness of the method was first demonstrated using synthetic datasets with known ground truth. The method was then applied to an experimental dataset collected on an operating lithium battery cell, revealing a high degree of intra- and interparticle chemical complexity in operating batteries.

2.
IUCrJ ; 11(Pt 1): 73-81, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096037

RESUMO

Speckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray imaging owing to its flexible setup and simultaneous yields of phase, transmission and scattering images. However, traditional speckle-tracking imaging methods suffer from phase distortion at locations with abrupt changes in density, which is always the case for real samples, limiting the applications of the speckle-tracking X-ray imaging method. In this paper, we report a deep-learning based method which can achieve dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval. The calibration results of a phantom show that the profile of the retrieved phase is highly consistent with the theoretical one. Experiments of polyurethane foaming demonstrated that the proposed method revealed the evolution of the complicated microstructure of the bubbles accurately. The proposed method is a promising solution for dynamic X-ray imaging with high-accuracy phase retrieval, and has extensive applications in metrology and quantitative analysis of dynamics in material science, physics, chemistry and biomedicine.

3.
J Synchrotron Radiat ; 30(Pt 4): 815-821, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145138

RESUMO

An in-house designed transmission X-ray microscopy (TXM) instrument has been developed and commissioned at beamline BL18B of the Shanghai Synchrotron Radiation Facility (SSRF). BL18B is a hard (5-14 keV) X-ray bending-magnet beamline recently built with sub-20 nm spatial resolution in TXM. There are two kinds of resolution mode: one based on using a high-resolution-based scintillator-lens-coupled camera, and the other on using a medium-resolution-based X-ray sCMOS camera. Here, a demonstration of full-field hard X-ray nano-tomography for high-Z material samples (e.g. Au particles, battery particles) and low-Z material samples (e.g. SiO2 powders) is presented for both resolution modes. Sub-50 nm to 100 nm resolution in three dimensions (3D) has been achieved. These results represent the ability of 3D non-destructive characterization with nano-scale spatial resolution for scientific applications in many research fields.


Assuntos
Dióxido de Silício , Síncrotrons , Raios X , China , Tomografia por Raios X
4.
J Synchrotron Radiat ; 29(Pt 1): 239-246, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985441

RESUMO

Rodents are used extensively as animal models for the preclinical investigation of microvascular-related diseases. However, motion artifacts in currently available imaging methods preclude real-time observation of microvessels in vivo. In this paper, a pixel temporal averaging (PTA) method that enables real-time imaging of microvessels in the mouse brain in vivo is described. Experiments using live mice demonstrated that PTA efficiently eliminated motion artifacts and random noise, resulting in significant improvements in contrast-to-noise ratio. The time needed for image reconstruction using PTA with a normal computer was 250 ms, highlighting the capability of the PTA method for real-time angiography. In addition, experiments with less than one-quarter of photon flux in conventional angiography verified that motion artifacts and random noise were suppressed and microvessels were successfully identified using PTA, whereas conventional temporal subtraction and averaging methods were ineffective. Experiments performed with an X-ray tube verified that the PTA method could also be successfully applied to microvessel imaging of the mouse brain using a laboratory X-ray source. In conclusion, the proposed PTA method may facilitate the real-time investigation of cerebral microvascular-related diseases using small animal models.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Animais , Camundongos , Microvasos/diagnóstico por imagem , Radiografia , Raios X
5.
IUCrJ ; 7(Pt 5): 793-802, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939271

RESUMO

Early stages of diseases, including stroke, hypertension, angiogenesis of tumours, spinal cord injuries, etc., are closely associated with the lesions of microvasculature. Rodent models of human vascular diseases are extensively used for the preclinical investigation of the disease evolution and therapy with synchrotron radiation. Therefore, non-invasive and in vivo X-ray imaging with high sensitivity and clarity is desperately needed to visualize the microvessels in live-animal models. Contrast agent is essential for the in vivo X-ray imaging of vessels and angiomatous tissue. Because of the non-rigid motion of adjacent tissues, the short circulation time and the intermittent flow of contrast agents in vessels, it is a great challenge for the traditional X-ray imaging methods to achieve well defined images of microvessels in vivo. In this article, move contrast X-ray imaging (MCXI) based on high-brightness synchrotron radiation is developed to overcome the intrinsic defects in conventional methods. Experiments with live rodents demonstrate the practicability of the MCXI method for sensitive and intact imaging of microvessels in vivo.

6.
J Synchrotron Radiat ; 26(Pt 5): 1631-1637, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490153

RESUMO

Indirect X-ray imaging detectors consisting of scintillator screens, long-working-distance microscope lenses and scientific high-speed complementary metal-oxide semiconductor (CMOS) cameras are usually used to realize fast X-ray imaging with white-beam synchrotron radiation. However, the detector efficiency is limited by the coupling efficiency of the long-working-distance microscope lenses, which is only about 5%. A long-working-distance microscope lenses system with a large numerical aperture (NA) is designed to increase the coupling efficiency. It offers an NA of 0.5 at 8× magnification. The Mitutoyo long-working-distance microscope lenses system offers an NA of 0.21 at 7.5× magnification. Compared with the Mitutoyo system, the developed long-working-distance microscope lenses system offers about twice the NA and four times the coupling efficiency. In the indirect X-ray imaging detector, a 50 µm-thick LuAG:Ce scintillator matching with the NA, and a high-speed visible-light CMOS FastCAM SAZ Photron camera are used. Test results show that the detector realized fast X-ray imaging with a frame rate of 100000 frames s-1 and fast X-ray microtomography with a temporal sampling rate up to 25 Hz (25 tomograms s-1).

7.
J Synchrotron Radiat ; 26(Pt 3): 729-736, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074437

RESUMO

As a strong tool for the study of nanoscience, the synchrotron hard X-ray nanoprobe technique enables researchers to investigate complex samples with many advantages, such as in situ setup, high sensitivity and the integration of various experimental methods. In recent years, an important goal has been to push the focusing spot size to the diffraction limit of ∼10 nm. The multilayer-based Kirkpatrick-Baez (KB) mirror system is one of the most important methods used to achieve this goal. This method was chosen by the nanoprobe beamline of the Phase-II project at the Shanghai Synchrotron Radiation Facility. To overcome the limitations of current polishing technologies, the use of an additional phase compensator was necessary to decrease the wavefront distortions. In this experiment, a prototype phase compensator has been created to show how to obtain precise wavefront compensation. With the use of finite-element analysis and Fizeau interferometer measurements, some important factors such as the piezoresponse, different actuator distributions, stability and hysteresis were investigated. A global optimization method based on the measured piezoresponse has also been developed. This method overcame the limitations of the previous local algorithm related to the adjustment of every single actuator for compact piezoelectric layouts. The mirror figure can approach a target figure after several iterations. The figure difference can be reduced to several nanometres, which is far better than the mirror figure errors. The prototype was also used to successfully compensate for the real wavefront errors from upstream and for its own figure errors, measured using the speckle scanning technique. The residual figure error was reduced to a root-mean-square value of 0.7 nm.

8.
Microsc Res Tech ; 81(10): 1173-1181, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30238563

RESUMO

Nondestructive three-dimensional (3D) micromorphological imaging technique is essential for hepatic alveolar echinococcosis (HAE) disease to determine its damage level and early diagnosis, assess relative drug therapy and optimize treatment strategies. However, the existing morphological researches of HAE mainly depend on the conventional CT, MRI, or ultrasound in hospitals, unfortunately confronting with the common limit of imaging resolution and sensitivity, especially for tiny or early HAE lesions. Now we presented a phase-retrieval-based synchrotron X-ray phase computed tomography (PR-XPCT) with striking contrast-to-noise ratio and high-density resolution to visualize the HAE nondestructive 3D structures and quantitatively segment different pathological characteristics of HAE lesions without staining process at the micrometer scale. Our experimental results of the HAE rat models at early and developed pathological stages and albendazole liposome (L-ABZ) therapeutic feeding models successfully exhibited the different HAE pathological 3D morphological and microstructural characteristics with excellent contrast and high resolution, demonstrating its availability and superiority. Moreover, we achieved the quantitative statistics and analysis of the pathological changes of HAE lesions at different stages and L-ABZ therapeutic evaluation, helpful to understanding the development and drug treatment of HAE disease. The PR-XPCT-based quantitative segmentation and characterization has a great potential in detection and analysis of soft tissue pathological changes, such as different tumors.


Assuntos
Equinococose Hepática/diagnóstico , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Albendazol/administração & dosagem , Albendazol/farmacologia , Animais , Modelos Animais de Doenças , Equinococose Hepática/patologia , Equinococose Hepática/terapia , Echinococcus multilocularis/citologia , Gerbillinae , Masculino , Ratos , Ratos Sprague-Dawley , Síncrotrons
9.
Appl Opt ; 56(30): 8326-8334, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091609

RESUMO

Small-angle x-ray scattering computed tomography (SAXS-CT) is a nondestructive method for the nanostructure analysis of heterogeneous materials. However, the limits of a long data acquisition time and vast amounts of data prevent SAXS-CT from becoming a routine experimental method in the applications of synchrotron radiation. In this study, the ordered subsets expectation maximization (OSEM) algorithm is introduced to improve the efficiency of SAXS-CT. To demonstrate the practicability of this method, a systematic simulation and experiments were carried out. The simulation results on a numerical phantom show that the OSEM-based SAXS-CT can effectively eliminate streaking artifacts and improve the efficiency of data acquisition by at least 3 times compared with the filter backprojection algorithm. By compromising the reconstruction speed and image quality, the optimal reconstruction parameters are also given for the image reconstruction in the OSEM-based SAXS-CT experiments. An experiment on a bamboo sample verified the validity of the proposed method with limited projection data. A further experiment on polyethylene demonstrated that the OSEM-based SAXS-CT is able to reveal the local nanoscale information about the crystalline structure and distributional difference inside the sample. In conclusion, the OSEM-based SAXS-CT can significantly improve experimental efficiency, which may promote SAXS-CT becoming a conventional method.

10.
PLoS One ; 12(9): e0183396, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886025

RESUMO

Propagation-based phase-contrast computed micro-tomography (PPCT) dominates the non-destructive, three-dimensional inner-structure measurement in synchrotron-based biomedical research due to its simple experimental setup. To quantitatively visualize tiny density variations in soft tissues and organs closely related to early pathological morphology, an experimental study of synchrotron-based X-ray PPCT combined with generalized phase and attenuation duality (PAD) phase retrieval was implemented with the hepatic echinococcosis (HE) infection rat model at different stages. We quantitatively analyzed and evaluated the different pathological characterizations of hepatic echinococcosis during the development of this disease via our PAD-based PPCT and especially provided evidence that hepatic alveolar echinococcosis invades the liver tissue and spreads through blood flow systems with abundant blood supply in the early stage. Additionally, the infiltration of tiny vesicles in HE lesions can be clearly observed by our PAD-PPCT technique due to the striking contrast-to-noise ratio (CNR) and mass density resolution, which cannot be found by the medical imaging techniques, such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound, in hospitals. The results demonstrated that our PAD-PPCT technique has a great potential for indicating the subtle structural information of pathological changes in soft biomedical specimens, especially helpful for the research of early micro-morphology of diseases.


Assuntos
Equinococose Hepática/diagnóstico por imagem , Equinococose Hepática/patologia , Microtomografia por Raio-X/métodos , Algoritmos , Animais , Biópsia , Modelos Animais de Doenças , Equinococose Hepática/parasitologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Modelos Estatísticos , Ratos
11.
J Xray Sci Technol ; 25(6): 1007-1017, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28777770

RESUMO

Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Microtomografia por Raio-X/métodos , Animais , Gryllidae , Mãos/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Humanos , Modelos Animais , Imagens de Fantasmas
12.
BMC Cancer ; 17(1): 73, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122521

RESUMO

BACKGROUND: This study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model. METHODS: A human hepatocellular carcinoma HCCLM3 xenograft model was established in nude mice. Xenografts were sampled each week for 4 weeks and fixed to analyze tissue characteristics and neovascularization using SR-based X-ray in-line phase contrast computed tomography (IL-XPCT) without any contrast agent. RESULTS: The effect of the energy level and object-to-detector distance on phase-contrast difference was in good agreement with the theory of IL-PCI. Boundaries between the tumor and adjacent normal tissues at week 1 were clearly observed in two-dimensional phase contrast projection imaging. A quantitative contrast difference was observed from weeks 1 to 4. Moreover, 3D image reconstruction of hepatocellular carcinoma (HCC) samples showed blood vessels inside the tumor were abnormal. The smallest blood vessels measured approximately 20 µm in diameter. The tumor vascular density initially increased and then decreased gradually over time. The maximum tumor vascular density was 4.29% at week 2. CONCLUSION: IL-XPCT successfully acquired images of neovascularization in HCC xenografts in nude mice.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imageamento Tridimensional , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Neovascularização Patológica/patologia , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Curr Biol ; 27(1): 144-148, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28017609

RESUMO

Ontogenetic variation is documented within many dinosaur species, but extreme ontogenetic changes are rare among dinosaurs, particularly among theropods. Here, we analyze 19 specimens of the Jurassic ceratosaurian theropod Limusaurus inextricabilis, representing six ontogenetic stages based on body size and histological data. Among 78 ontogenetic changes we identify in these specimens, the most unexpected one is the change from fully toothed jaws in the hatchling and juvenile individuals to a completely toothless beaked jaw in the more mature individuals, representing the first fossil record of ontogenetic edentulism among the jawed vertebrates. Jaw morphological data, including those derived from Mi-CT and SR-µCT scanning of Limusaurus specimens, reveal dental alveolar vestiges and indicate that ontogenetic tooth loss in Limusaurus is a gradual, complex process. Our discovery has significant implications for understanding the evolution of the beak, an important feeding structure present in several tetrapod clades, including modern birds. This radical morphological change suggests a dietary shift, probably from omnivory for juvenile Limusaurus to herbivory for adult Limusaurus, which is also supported by additional evidence from gastroliths and stable isotopes. Incorporating new ontogenetic information from Limusaurus into phylogenetic analyses demonstrates surprisingly little effect on its placement when data from different stages are used exclusively, in contrast to previous analyses of tyrannosaurids, but produces subtle differences extending beyond the placement of Limusaurus.


Assuntos
Evolução Biológica , Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Dente/anatomia & histologia , Animais , Tamanho Corporal , Osso e Ossos/fisiologia , Dinossauros/fisiologia , Fósseis , Arcada Osseodentária/fisiologia , Filogenia , Dente/fisiologia
14.
Phys Rev Lett ; 117(11): 113901, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661686

RESUMO

Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

15.
Sci Rep ; 6: 32380, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580585

RESUMO

Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system.


Assuntos
Sacos Aéreos/diagnóstico por imagem , Anisotropia , Insetos/anatomia & histologia , Microtomografia por Raio-X , Animais , Imageamento Tridimensional , Respiração
16.
J Xray Sci Technol ; 24(1): 79-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890902

RESUMO

BACKGROUND: The outstanding functional importance of the brain implies a strong need for brain imaging modalities. However, the current imaging approaches that target the brain in rodents remain suboptimal. OBJECTIVE AND METHODS: In this paper, X-ray propagation-based phase contrast imaging combined with equally sloped tomography (PPCI-EST) was employed to nondestructively investigate the mouse brain. RESULTS: The grey and white matters, which have extremely small differences in electron density, were clearly discriminated. The fine structures, including the corpus callosum (cc), the optic chiasma (ox) and the caudate putamen (CPu), were revealed. Compared to the filtered back projection reconstruction, the PPCI-EST significantly reduce projection number while maintaining sufficient image quality. CONCLUSIONS: It could be a potential tool for fast and low-dose phase-contrast imaging to biomedical specimens.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Camundongos , Razão Sinal-Ruído
18.
Analyst ; 140(10): 3521-5, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25834844

RESUMO

X-ray fluorescence computed tomography (XFCT) is a stimulated emission tomography modality that maps the three-dimensional (3D) distribution of elements. Generally, XFCT is done by scanning a pencil-beam across the sample. This paper presents a feasibility study of full-field XFCT (FF-XFCT) for 3D elemental imaging. The FF-XFCT consists of a pinhole collimator and X-ray imaging detector with no energy resolution. A prototype imaging system was set up at the Shanghai Synchrotron Radiation Facility (SSRF) for imaging the phantom. The first FF-XFCT experimental results are presented. The cadmium (Cd) and iodine (I) distributions were reconstructed. The results demonstrate FF-XFCT is fit for 3D elemental imaging and the sensitivity of FF-XFCT is higher than a conventional CT system.

20.
Biomed Mater Eng ; 24(1): 1341-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24212030

RESUMO

PURPOSE: To establish a method for mouse coronary angiography in vivo using synchrotron radiation, which is essential for physiological and pathological research on coronary diseases. METHODS: 1) The imaging parameters (e.g., photon energy, spatial resolution of the detector, and injection rate of contrast agent) optimal for the quality of acquired images in a simulation were determined. 2) Through animal experiments, the effectiveness of these optimal parameters and the repeatability of in vivo coronary angiography were verified. 3) An algorithm for background subtraction and contrast enhancement was designed and employed to compensate for the effects of interference and the effective information extracted used for diagnosing coronary disease. RESULTS AND CONCLUSIONS: An optimal set of the imaging parameters was finally determined: photon energy of 33-34 keV, detector's spatial resolution of 30 µm or higher, image capture rate of 20 f/s or more, concentration of lopamidol solution of 75% as contrast agent and a pulse injection of contrast agent at a high rate.


Assuntos
Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Síncrotrons , Algoritmos , Animais , Simulação por Computador , Meios de Contraste/química , Doença das Coronárias/diagnóstico por imagem , Vasos Coronários/patologia , Processamento de Imagem Assistida por Computador , Luz , Masculino , Camundongos , Fótons , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...